Rev.03T3.30 20231012

40G QSFP+ to 4xSFP+ Breakout Active Optical Cable (AOC) Hot Pluggable, 850nm VCSEL, MMF 1~150M, DDM

Part Number: FAOC-40G-QPSP-xxx-xx

Overview

FAOC-40G-QPSP-xxx-xx 40G QSFP+ to 4xSFP+ Active Optical Cables (AOC) are direct-attach fiber assemblies with QSFP+ and SFP+ form factor. The AOC utilize multimode fiber with 850nm VCSEL and PIN PD. It could be used as an alternative solution to QSFP+ to 4xSFP+ passive and active copper breakout cables, while providing improved signal integrity, longer distances, superior electro-magnetic immunity & better bit error rate performance. They are suitable for 1~150 meters distances and offer a cost-effective way for very high port density connections.

Applications

- 40GBASE-SR4 Ethernet to 4x10G BASE-SR Ethernet Link
- InfiniBand QDR, FDR10
- Data Center & Storage
- Datacom / Telecom Switch & Router

Features

- Compatible with IEEE802.3ba 40GBASE-SR4
- Compatible with IEEE802.3ae 10GBASE-SR
- Compliant with SFF-8436 QSFP+ MSA
- Compliant with SFF-8431 SFP+ MSA
- Support InfiniBand QDR, FDR10
- 4 independent full-duplex channels
- Up to 10.3125Gbps data rate per channel
- Hot Pluggable
- 850nm VCSEL array transmitter
- 1x40GBASE-SR4 to 4x10GBASE-SR
- 2-wire interface for management and diagnostic monitor compliant with SFF-8436, SFF-8636 (for 40G) and SFF-8472 (for 10G)
- Single 3.3V power supply
- Link distance up to 150m over MM OM3 fiber
- Low power consumption <1.5W (QSFP+)
- Low power consumption <1.0W (SFP+)
- RoHS Compliant

1

Rev.03T3.30_20231012

Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Unit
Storage Temperature	Tst	-20	+85	°C
Storage Relative Humidity	RH	5	85	%
Supply Voltage	Vcc	-0.5	+3.6	V

Recommended Operating Conditions

Parai	meters	Symbol	Min.	Тур.	Max.	Unit	Note
Case Operating Ten	nperature	TOP	0	-	+70	°C	
Supply Voltage		Vcc	+3.13	+3.3	+3.47	V	
Data Rate, per Lane	e	DR		10.3125		Gb/s	
Bit Error Rate		BER			10 ⁻¹²		1
Supply Current, per	QSFP+	Icc			450	mA	
Supply Current, per	SFP+	Icc			300	mA	
Power Consumption	n, per QSFP+	Р			1.5	W	
Power Consumption	n, per SFP+	Р			1.0	W	
Power-On Initializat	Power-On Initialization Time				2000	ms	2
Minimum Cable Ber	nding Radius		30			mm	
Ma dO all	Module Select	Vol	GND		0.8	V	
ModSelL	Module Unselect	Vон	2.5		Vcc	V	
I DMI -	Low Power Mode	VIL	GND		0.8	V	
LPMode	Normal Operation	Vih	2.5		Vcc+0.3	V	
D#	Reset	VIL	GND		0.8	V	
ResetL	Normal Operation	ViH	2.5		Vcc+0.3	V	
ModPrsL	Normal Operation	Vol	GND		0.4	V	
141	Interrupt	Vol	GND		0.4	V	
IntL	Normal Operation	Vон	2.4		Vcc	V	

Note1: Measured with a PRBS 2³¹-1 test pattern @10.3125Gbps.

TEL+886-2-2898-3830

Note2: Power-on Initialization Time is the time from when the power supply voltages reach and remain above the minimum recommended operating supply voltages to the time when the module is fully functional.

Rev.03T3.30_20231012

QSFP+ Transmitter Electro-optical Characteristics

 V_{CC} = 3.13V to 3.47V, T_{OP} = 0 °C to 70 °C

Parameters	Symbol	Min.	Тур.	Max.	Unit	Note
Average Optical Power, per Lane	Pavg	-6.0		+2.4	dBm	
Optical Center Wavelength	λc	830	850	870	nm	
Spectral Width (RMS)	Δλ			0.65	nm	
Optical Extinction Ratio	ER	3			dB	
Differential Input Impedance	ZIN	90	100	110	Ω	
Differential Data Input Swing	Vin	200		1600	mV	

QSFP+ Receiver Electro-optical Characteristics

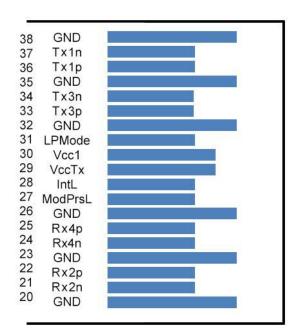
 V_{CC} = 3.13V to 3.47V, T_{OP} = 0 °C to 70 °C

Parameters	Symbol	Min.	Тур.	Max.	Unit	Note
Optical Center Wavelength	λc	830	850	870	nm	
Differential Output Impedance	Zout	90	100	110	Ω	
Differential Data Output Swing	Vоит	350		800	mV	

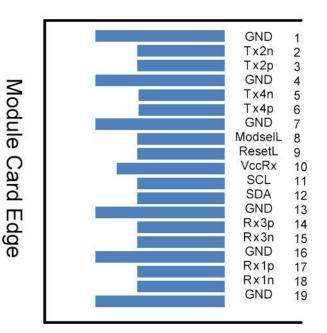
SFP+ Transmitter Electro-optical Characteristics

 V_{CC} = 3.13V to 3.47V, T_{OP} = 0 °C to 70 °C

Parameters	Symbol	Min.	Тур.	Max.	Unit	Note
Optical Launch Power	Po	-6.0		+2.4	dBm	
Optical Center Wavelength	λc	820	850	880	nm	
Spectral Width (RMS)	Δλ			0.45	nm	
Optical Extinction Ratio	ER	3			dB	
Differential Input Impedance	Zın	90	100	110	Ω	
Differential Data Input Swing	Vin	200		1600	mV	
Tx Disable Input Voltage-Low (Tx ON)	TDISVL	GND		0.8	V	
Tx Disable Input Voltage-High (Tx OFF)	TDISVH	2.0		Vcc+0.	V	
Tx Fault Output Voltage-Low (Tx Normal)	TFLTV∟	GND		0.8	V	
Tx Fault Output Voltage-High (Tx Fault)	TFLTVH	2.0		Vcc	V	

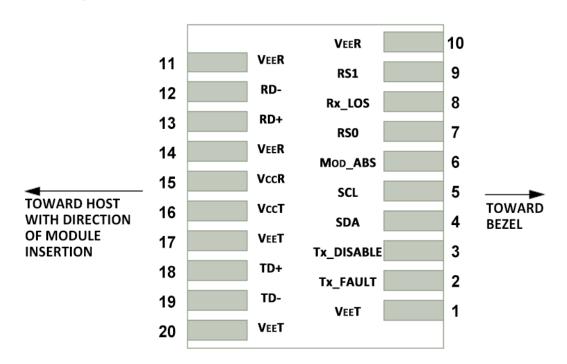

Rev.03T3.30_20231012

SFP+ Receiver Electro-optical Characteristics


 V_{CC} = 3.13V to 3.47V, T_{OP} = 0 °C to 70 °C

Parameters	Symbol	Min.	Тур.	Max.	Unit	Note
Optical Center Wavelength	λc	820	850	880	nm	
Differential Output Impedance	Zоит	90	100	110	Ω	
Differential Data Output Swing	Vоит	370		1600	mV	
Receiver LOS Signal Output Voltage-Low	LOSVL	GND		0.8	V	
Receiver LOS Signal Output Voltage-High	LOSVH	2.0		Vcc	V	

QSFP+ Pin Assignment


Top Side Viewed From Top

Bottom Side Viewed From Bottom

Rev.03T3.30_20231012

SFP+ Pin Assignment

Host PCB SFP+ Pad Assignment Top View

QSFP+ Pin Description

Pin	Logic	Name	Function / Description
1		GND	Module Ground
2	CML-I	Tx2n	Transmitter Inverted Data Input
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input
4		GND	Module Ground
5	CML-I	Tx4n	Transmitter Inverted Data Input
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input
7		GND	Module Ground
8	LVTLL-I	ModSelL	Module Select
9	LVTLL-I	ResetL	Module Reset
10		VccRx	+3.3V Power Supply Receiver
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data
13		GND	Module Ground

5

Rev.03T3.30_20231012

14	CML-O	Rx3p	Receiver Non-Inverted Data Output
15	CML-O	Rx3n	Receiver Inverted Data Output
16		GND	Module Ground
17	CML-O	Rx1p	Receiver Non-Inverted Data Output
18	CML-O	Rx1n	Receiver Inverted Data Output
19		GND	Module Ground
20		GND	Module Ground
21	CML-O	Rx2n	Receiver Inverted Data Output
22	CML-O	Rx2p	Receiver Non-Inverted Data Output
23		GND	Module Ground
24	CML-O	Rx4n	Receiver Inverted Data Output
25	CML-O	Rx4p	Receiver Non-Inverted Data Output
26		GND	Module Ground
27	LVTLL-O	ModPrsL	Module Present
28	LVTLL-O	IntL	Interrupt
29		VccTx	+3.3V Power Supply Transmitter
30		Vcc1	+3.3V Power Supply
31	LVTLL-I	LPMode	Low Power Mode
32		GND	Module Ground
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input
34	CML-I	Tx3n	Transmitter Inverted Data Input
35		GND	Module Ground
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input
37	CML-I	Tx1n	Transmitter Inverted Data Input
38		GND	Module Ground

Note1: GND is the symbol for signal and supply (power) common for QSFP modules. All are common within the QSFP module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground lane.

Note2: VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.

Rev.03T3.30_20231012

SFP+ Pin Description

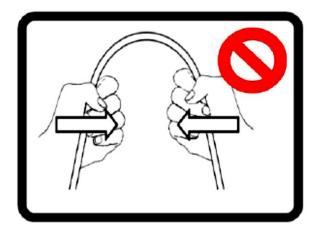
Pin	Name	Function / Description
1	VEET	Transmitter Ground
2	Tx_FAULT	Transmitter Fault Indication (1)
3	Tx_DISABLE	Transmitter Disable – Turns off transmitter laser output (2)
4	SDA	2-wire Serial Interface Data Line (SDA: Serial Data Signal) (3)
5	SCL	2-wire Serial Interface Clock (SCL: Serial Clock Signal) (3)
6	Mod_ABS	Module Absent, connected to VEET or VEER in the module (3)
7	RS0	Rate Select 0, optional (5)
8	Rx_LOS	Receiver Loss of Signal Indication (4)
9	RS1	Rate Select 1, optional (5)
10	VEER	Receiver Ground
11	VEER	Receiver Ground
12	RD-	Receiver Inverted Data output, AC coupled
13	RD+	Receiver Non-Inverted Data output, AC coupled
14	VEER	Receiver Ground
15	VccR	Receiver 3.3V Power Supply
16	VccT	Transmitter 3.3V Power Supply
17	VEET	Transmitter Ground
18	TD+	Transmitter Non-Inverted Data Input, AC coupled
19	TD-	Transmitter Inverted Data Input, AC coupled
20	VEET	Transmitter Ground

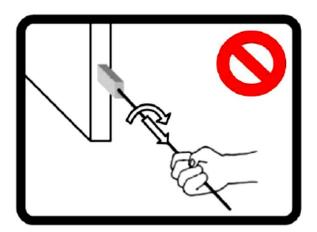
Note1: Tx Fault is open collector/drain output which should be pulled up externally with a 4.7K~10KΩ resistor on the host board to supply <VccT+0.3V or VccR+0.3V. When high, this output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to <0.8V.

Note2: Tx Disable input is used to shut down the laser output per the state table below. It is pulled up within the module with a $4.7K\sim10K\Omega$ resistor. 1) Low(0 $\sim0.8V$): Transmitter on; 2) Between(0.8V and 2V): Undefined; 3) High (2.0~ VccT): Transmitter Disabled; 4) Open: Transmitter Disabled.

Note3: These are the module definition pins. They should be pulled up with a 4.7K~10KΩ resistor on the host board to supply less than VccT+0.3V or VccR+0.3V. MOD_ABS is grounded by the module to indicate that the module is present.

Note4: Rx_LOS (Loss of signal) is an open collector/drain output which should be pulled up externally with a 4.7K~10KΩ resistor on the host board to supply <VccT+0.3V or VccR+0.3V. When high, this output indicates the received optical power is below the worst case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to <0.8V.


Sales@Ficer.com


Note5: Tied to ground through a 30K ohm resistor.

Rev.03T3.30_20231012

Handling

Care should be taken to restrict exposure to the conditions defined in the Absolute Maximum Ratings and Recommended Operating Conditions. Put the product in an even and stable location. If the product falls down or drops, it may cause an injury or malfunction. The cable must not be subject to extreme bends during installation or while in operation. If you bend the cable at a radius less than the cable minimum bend radius, then the cable may get damaged. Don't twist or pull by force ends of the cable, which might cause malfunction. In addition, the bending direction should be perpendicular to the flat surface of the ribbon cable. Please do not bend or kink the cable in lateral directions of flat surface of the ribbon.

Rev.03T3.30_20231012

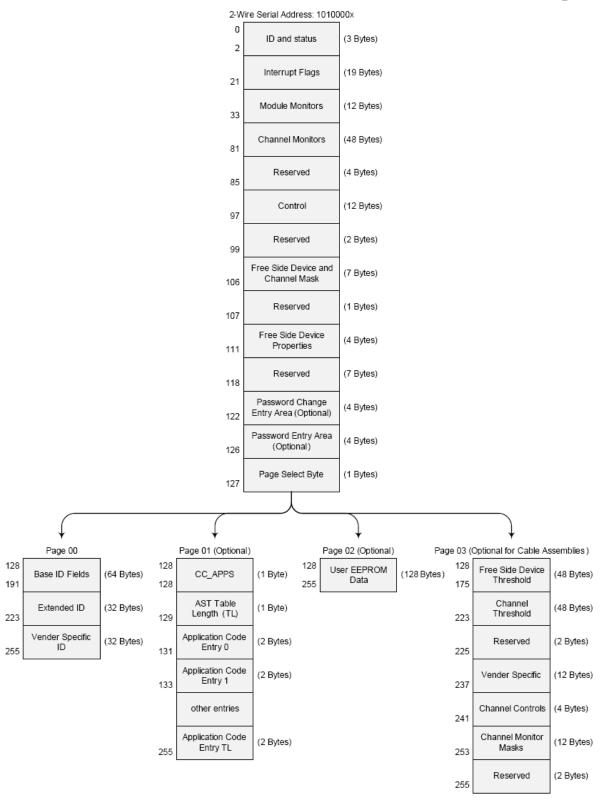
QSFP+ Digital Diagnostic Functions

As defined by the QSFP+ MSA, Ficer's QSFP+ transceivers provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:

- Transceiver temperature
- Laser bias current (4-Channel)
- Transmitted optical power (4-Channel)
- Received optical power (4-Channel)
- Transceiver supply voltage

It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Controller (DDC) inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the QSFP+ transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data from the QSFP+ transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The 2-wire serial interface provides sequential or random access to the 8 bit parameters, addressed from 000h to the maximum address of the memory.


For more detailed information including memory map definitions, please see the QSFP+ MSA Specification.

QSFP+ Digital Diagnostic Memory Map

TEL+886-2-2898-3830

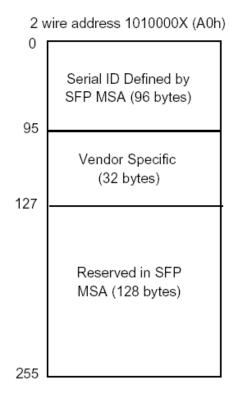
Sales@Ficer.com

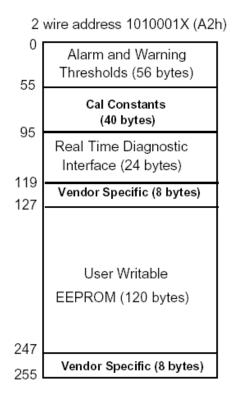
Rev.03T3.30_20231012

Rev.03T3.30_20231012

SFP+ Digital Diagnostic Functions

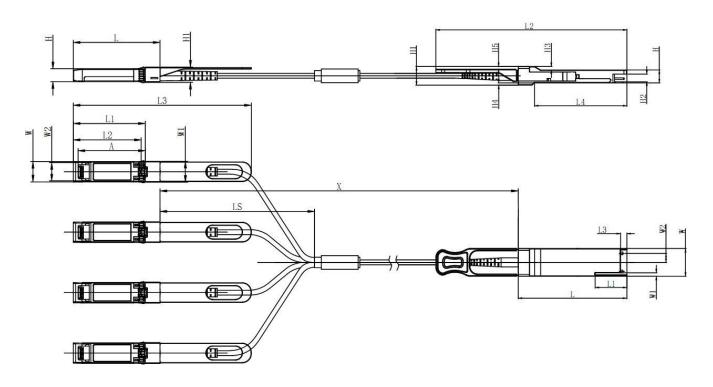
As defined by the SFP MSA (SFF-8472) Ficer's SFP+ transceivers provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:


- Transceiver temperature
- Laser bias current
- Transmitted optical power
- Received optical power
- Transceiver supply voltage


It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Controller (DDC) inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the SFP+ transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data from the SFP+ transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. For more detailed information including memory map definitions, please see the SFP MSA (SFF-8472) Specification.

Rev.03T3.30_20231012


SFP+ Digital Diagnostic Memory Map

Rev.03T3.30_20231012

Mechanical Dimensions

QSFP+	L	L1	L2	L3	L4	W	W1	W2	Н	H1	H2	Н3	H4	H5
Max	72.2	-	128	4.35	61.4	18.45	-	6.2	8.6	12.4	5.35	2.5	1.6	2.0
Typical	72.0	-	-	4.20	61.2	18.35	-	-	8.5	12.2	5.2	2.3	1.5	1.8
Min	68.8	16.5	124	4.05	61.0	18.25	2.2	5.8	8.4	12.0	5.05	2.1	1.3	1.6

SFP+	L	L1	L2	L3	W	W1	W2	Н	H1	Α
Max	72.2	-	128	4.35	18.45	-	6.2	8.6	12.4	2.0
Typical	72.0	-	-	4.20	18.35	-	-	8.5	12.2	1.8
Min	68.8	16.5	124	4.05	18.25	2.2	5.8	8.4	12.0	1.6

(All Dimensions are ±0.20mm Unless Otherwise Specified, Unit: mm)

Cable Length (CL)	Tolerance	Cable Length (CL)	Breakout Length (LS)
1m ~ 4.5m	+15 / -0cm	1m	0.7m
4.6m ~ 14.5m	+30 / -0cm	2m	1.4m
14.6m ~ 100m	+2% / -0cm	3m ~ 4m	2m
-	-	5m ~ 100m	3m

Rev.03T3.30_20231012

Ordering Information

	FAOC-40G-QPSP-]L3
Cable Length —		
meters (including QSFP+, SFP+)		
Example: 003=3m.	015=15m, 100=100m, 0X5=0.5m, 3X5=3.5m	
•	, ,	
Cable Jacket —		
P: PVC	Q: OFNP	
L: LSZH* (default)		
Fiber Type ——		

- 2: MM 50/125 OM2
- 3: MM 50/125 OM3* (default)
- 4: MM 50/125 OM4

TEL+886-2-2898-3830